Advertisement

Molecular testing in melanoma for the surgical pathologist

  • Aleodor A. Andea
    Correspondence
    Address for correspondence: Aleodor A. Andea, MD, MBA, University of Michigan Department of Pathology, NCRC Bldg. 35, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
    Affiliations
    Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
    Search for articles by this author
Published:January 16, 2023DOI:https://doi.org/10.1016/j.pathol.2022.12.343

      Summary

      The diagnostic work-up of melanocytic tumours has undergone significant changes in the last years following the exponential growth of molecular assays. For the practising pathologist it is often difficult to sort through the multitude of different tests that are currently available for clinical use. The molecular tests used in melanocytic pathology can be broadly divided into four categories: (1) tests that predict response to systemic therapy in melanoma; (2) tests that predict prognosis in melanoma; (3) tests useful in determining the type or class of melanocytic tumour; and (4) tests useful in the differential diagnosis of naevus versus melanoma (primarily used as an aid in the diagnosis of histologically ambiguous melanocytic lesions). This review will present an updated synopsis of major molecular ancillary tests used in clinical practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yeh I.
        • Bastian B.C.
        Melanoma pathology: new approaches and classification.
        Br J Dermatol. 2021; 185: 282-293
        • Pollock P.M.
        • Harper U.L.
        • Hansen K.S.
        • et al.
        High frequency of braf mutations in nevi.
        Nat Genet. 2003; 33: 19-20
        • van Engen-van Grunsven A.C.
        • van Dijk M.C.
        • Ruiter D.J.
        • Klaasen A.
        • Mooi W.J.
        • Blokx W.A.
        HRAS-mutated spitz tumors: a subtype of spitz tumors with distinct features.
        Am J Surg Pathol. 2010; 34: 1436-1441
        • Van Raamsdonk C.D.
        • Bezrookove V.
        • Green G.
        • et al.
        Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.
        Nature. 2009; 457: 599-602
        • Van Raamsdonk C.D.
        • Griewank K.G.
        • Crosby M.B.
        • et al.
        Mutations in GNA11 in uveal melanoma.
        N Engl J Med. 2010; 363: 2191-2199
        • Wiesner T.
        • He J.
        • Yelensky R.
        • et al.
        Kinase fusions are frequent in spitz tumours and spitzoid melanomas.
        Nat Commun. 2014; 5: 3116
        • Yeh I.
        • Tee M.K.
        • Botton T.
        • et al.
        NTRK3 kinase fusions in spitz tumours.
        J Pathol. 2016; 240: 282-290
      1. Elder D.E. Massi D. Scolyer R.A. Willemze R. WHO Classification of Skin Tumours. 4th ed. IARC Press, Lyon2018
        • Shain A.H.
        • Yeh I.
        • Kovalyshyn I.
        • et al.
        The genetic evolution of melanoma from precursor lesions.
        N Engl J Med. 2015; 373: 1926-1936
        • Elder D.E.
        • Bastian B.C.
        • Cree I.A.
        • Massi D.
        • Scolyer R.A.
        The 2018 World Health Organization classification of cutaneous, mucosal, and uveal melanoma: detailed analysis of 9 distinct subtypes defined by their evolutionary pathway.
        Arch Pathol Lab Med. 2020; 144: 500-522
        • Yeh I.
        • Lang U.E.
        • Durieux E.
        • et al.
        Combined activation of map kinase pathway and beta-catenin signaling cause deep penetrating nevi.
        Nat Commun. 2017; 8: 644
        • Isales M.C.
        • Mohan L.S.
        • Quan V.L.
        • et al.
        Distinct genomic patterns in pigmented epithelioid melanocytoma: a molecular and histologic analysis of 16 cases.
        Am J Surg Pathol. 2019; 43: 480-488
        • Zembowicz A.
        • Knoepp S.M.
        • Bei T.
        • et al.
        Loss of expression of protein kinase a regulatory subunit 1alpha in pigmented epithelioid melanocytoma but not in melanoma or other melanocytic lesions.
        Am J Surg Pathol. 2007; 31: 1764-1775
        • Wiesner T.
        • Murali R.
        • Fried I.
        • et al.
        A distinct subset of atypical spitz tumors is characterized by braf mutation and loss of bap1 expression.
        Am J Surg Pathol. 2012; 36: 818-830
        • VandenBoom T.
        • Quan V.L.
        • Zhang B.
        • et al.
        Genomic fusions in pigmented spindle cell nevus of reed.
        Am J Surg Pathol. 2018; 42: 1042-1051
        • Bastian B.C.
        • Xiong J.
        • Frieden I.J.
        • et al.
        Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas.
        Am J Pathol. 2002; 161: 1163-1169
        • Chan M.P.
        • Andea A.A.
        • Harms P.W.
        • et al.
        Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.
        Mod Pathol. 2016; 29: 227-239
        • Costa S.
        • Byrne M.
        • Pissaloux D.
        • et al.
        Melanomas associated with blue nevi or mimicking cellular blue nevi: clinical, pathologic, and molecular study of 11 cases displaying a high frequency of gna11 mutations, bap1 expression loss, and a predilection for the scalp.
        Am J Surg Pathol. 2016; 40: 368-377
        • Chapman P.B.
        • Hauschild A.
        • Robert C.
        • et al.
        Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
        N Engl J Med. 2011; 364: 2507-2516
        • Flaherty K.T.
        • Infante J.R.
        • Daud A.
        • et al.
        Combined braf and mek inhibition in melanoma with braf v600 mutations.
        N Engl J Med. 2012; 367: 1694-1703
        • Welsh S.J.
        • Corrie P.G.
        Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma.
        Ther Adv Med Oncol. 2015; 7: 122-136
        • Savoia P.
        • Zavattaro E.
        • Cremona O.
        Clinical implications of acquired BRAF inhibitors resistance in melanoma.
        Int J Mol Sci. 2020; 21: 9730
        • Long G.V.
        • Wilmott J.S.
        • Capper D.
        • et al.
        Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma.
        Am J Surg Pathol. 2013; 37: 61-65
        • Marin C.
        • Beauchet A.
        • Capper D.
        • et al.
        Detection of BRAF p.V600E mutations in melanoma by immunohistochemistry has a good interobserver reproducibility.
        Arch Pathol Lab Med. 2014; 138: 71-75
        • Pearlstein M.V.
        • Zedek D.C.
        • Ollila D.W.
        • et al.
        Validation of the ve1 immunostain for the BRAF V600E mutation in melanoma.
        J Cutan Pathol. 2014; 41: 724-732
        • Cancer Genome Atlas Network
        Genomic classification of cutaneous melanoma.
        Cell. 2015; 161: 1681-1696
        • Delyon J.
        • Lebbe C.
        • Dumaz N.
        Targeted therapies in melanoma beyond BRAF: targeting NRAS-mutated and KIT-mutated melanoma.
        Curr Opin Oncol. 2020; 32: 79-84
        • Schuler M.
        • Zimmer L.
        • Kim K.B.
        • et al.
        Phase IB/II trial of ribociclib in combination with binimetinib in patients with NRAS-mutant melanoma.
        Clin Cancer Res. 2022; 28: 3002-3010
        • Curtin J.A.
        • Busam K.
        • Pinkel D.
        • Bastian B.C.
        Somatic activation of kit in distinct subtypes of melanoma.
        J Clin Oncol. 2006; 24: 4340-4346
        • Funchain P.
        • Tarhini A.A.
        Using genomic sequencing to improve management in melanoma.
        Oncology (Williston Park). 2018; 32: 98-101
        • Auslander N.
        • Zhang G.
        • Lee J.S.
        • et al.
        Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma.
        Nat Med. 2018; 24: 1545-1549
        • Farberg A.S.
        • Marson J.W.
        • Glazer A.
        • et al.
        Expert consensus on the use of prognostic gene expression profiling tests for the management of cutaneous melanoma: consensus from the skin cancer prevention working group.
        Dermatol Ther (Heidelb). 2022; 12: 807-823
        • Gerami P.
        • Cook R.W.
        • Wilkinson J.
        • et al.
        Development of a prognostic genetic signature to predict the metastatic risk associated with cutaneous melanoma.
        Clin Cancer Res. 2015; 21: 175-183
        • Greenhaw B.N.
        • Zitelli J.A.
        • Brodland D.G.
        Estimation of prognosis in invasive cutaneous melanoma: an independent study of the accuracy of a gene expression profile test.
        Dermatol Surg. 2018; 44: 1494-1500
        • Hsueh E.C.
        • DeBloom J.R.
        • Lee J.
        • et al.
        Interim analysis of survival in a prospective, multi-center registry cohort of cutaneous melanoma tested with a prognostic 31-gene expression profile test.
        J Hematol Oncol. 2017; 10: 152
        • Zager J.S.
        • Gastman B.R.
        • Leachman S.
        • et al.
        Performance of a prognostic 31-gene expression profile in an independent cohort of 523 cutaneous melanoma patients.
        BMC Cancer. 2018; 18: 130
        • Gastman B.R.
        • Zager J.S.
        • Messina J.L.
        • et al.
        Performance of a 31-gene expression profile test in cutaneous melanomas of the head and neck.
        Head Neck. 2019; 41: 871-879
        • Hsueh E.C.
        • DeBloom J.R.
        • Lee J.H.
        • et al.
        Long-term outcomes in a multicenter, prospective cohort evaluating the prognostic 31-gene expression profile for cutaneous melanoma.
        JCO Precis Oncol. 2021; 5 (PO.20)00119
        • Arnot S.P.
        • Han G.
        • Fortino J.
        • Han D.
        • Fowler G.
        • Vetto J.T.
        Utility of a 31-gene expression profile for predicting outcomes in patients with primary cutaneous melanoma referred for sentinel node biopsy.
        Am J Surg. 2021; 221: 1195-1199
        • Meves A.
        • Nikolova E.
        • Heim J.B.
        • et al.
        Tumor cell adhesion as a risk factor for sentinel lymph node metastasis in primary cutaneous melanoma.
        J Clin Oncol. 2015; 33: 2509-2515
        • Bellomo D.
        • Arias-Mejias S.M.
        • Ramana C.
        • et al.
        Model combining tumor molecular and clinicopathologic risk factors predicts sentinel lymph node metastasis in primary cutaneous melanoma.
        JCO Precis Oncol. 2020; 4: 319-334
        • Brunner G.
        • Reitz M.
        • Heinecke A.
        • et al.
        A nine-gene signature predicting clinical outcome in cutaneous melanoma.
        J Cancer Res Clin Oncol. 2013; 139: 249-258
        • Gannbichler T.
        • Reinhold U.
        • Tsagoudis K.
        • et al.
        Gene-signature based prediction of relapse-free survival in melanoma patients with known sentinel lymph node status.
        J Clin Oncol. 2017; 35e21037
        • Grossman D.
        • Okwundu N.
        • Bartlett E.K.
        • et al.
        Prognostic gene expression profiling in cutaneous melanoma: identifying the knowledge gaps and assessing the clinical benefit.
        JAMA Dermatol. 2020; 156: 1004-1011
        • Hechtman J.F.
        • Benayed R.
        • Hyman D.M.
        • et al.
        Pan-TRK immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions.
        Am J Surg Pathol. 2017; 41: 1547-1551
        • Elmore J.G.
        • Barnhill R.L.
        • Elder D.E.
        • et al.
        Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study.
        BMJ. 2017; 357: j2813
        • Farmer E.R.
        • Gonin R.
        • Hanna M.P.
        Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists.
        Hum Pathol. 1996; 27: 528-531
        • Shoo B.A.
        • Sagebiel R.W.
        • Kashani-Sabet M.
        Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center.
        Am J Acad Dermatol. 2010; 62: 751-756
        • Balaban G.
        • Herlyn M.
        • Guerry D.T.
        • et al.
        Cytogenetics of human malignant melanoma and premalignant lesions.
        Cancer Genet Cytogenet. 1984; 11: 429-439
        • Cowan J.M.
        • Halaban R.
        • Francke U.
        Cytogenetic analysis of melanocytes from premalignant nevi and melanomas.
        J Natl Cancer Inst. 1988; 80: 1159-1164
        • Thompson F.H.
        • Emerson J.
        • Olson S.
        • et al.
        Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes.
        Cancer Genet Cytogenet. 1995; 83: 93-104
        • Sisley K.
        • Cottam D.W.
        • Rennie I.G.
        • et al.
        Non-random abnormalities of chromosomes 3, 6, and 8 associated with posterior uveal melanoma.
        Genes Chromosomes Cancer. 1992; 5: 197-200
        • Bastian B.C.
        • Olshen A.B.
        • LeBoit P.E.
        • Pinkel D.
        Classifying melanocytic tumors based on DNA copy number changes.
        Am J Pathol. 2003; 163: 1765-1770
        • Gilbert M.T.
        • Haselkorn T.
        • Bunce M.
        • et al.
        The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when?.
        PLoS One. 2007; 2: e537
        • Wang Y.
        • Moorhead M.
        • Karlin-Neumann G.
        • et al.
        Analysis of molecular inversion probe performance for allele copy number determination.
        Genome Biol. 2007; 8: R246
        • Chandler W.M.
        • Rowe L.R.
        • Florell S.R.
        • Jahromi M.S.
        • Schiffman J.D.
        • South S.T.
        Differentiation of malignant melanoma from benign nevus using a novel genomic microarray with low specimen requirements.
        Arch Pathol Lab Med. 2012; 136: 947-955
        • Wang L.
        • Rao M.
        • Fang Y.
        • et al.
        A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation.
        J Mol Diagn. 2013; 15: 581-591
        • Mesbah Ardakani N.
        • Thomas C.
        • Robinson C.
        • et al.
        Detection of copy number variations in melanocytic lesions utilising array based comparative genomic hybridisation.
        Pathology. 2017; 49: 285-291
        • Barnhill R.L.
        • Argenyi Z.B.
        • From L.
        • et al.
        Atypical spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome.
        Hum Pathol. 1999; 30: 513-520
        • Barnhill R.L.
        • Argenyi Z.
        • Berwick M.
        • et al.
        Atypical cellular blue nevi (cellular blue nevi with atypical features): lack of consensus for diagnosis and distinction from cellular blue nevi and malignant melanoma ("malignant blue nevus").
        Am J Surg Pathol. 2008; 32: 36-44
        • Bastian B.C.
        • Wesselmann U.
        • Pinkel D.
        • Leboit P.E.
        Molecular cytogenetic analysis of spitz nevi shows clear differences to melanoma.
        J Invest Dermatol. 1999; 113: 1065-1069
        • Ali L.
        • Helm T.
        • Cheney R.
        • et al.
        Correlating array comparative genomic hybridization findings with histology and outcome in spitzoid melanocytic neoplasms.
        Int J Clin Exp Pathol. 2010; 3: 593-599
        • Dai J.
        • Tetzlaff M.T.
        • Schuchter L.M.
        • Elder D.E.
        • Elenitsas R.
        Histopathologic and mutational analysis of a case of blue nevus-like melanoma.
        J Cutan Pathol. 2016; 43: 776-780
        • Maize Jr., J.C.
        • McCalmont T.H.
        • Carlson J.A.
        • Busam K.J.
        • Kutzner H.
        • Bastian B.C.
        Genomic analysis of blue nevi and related dermal melanocytic proliferations.
        Am J Surg Pathol. 2005; 29: 1214-1220
        • North J.P.
        • Yeh I.
        • McCalmont T.H.
        • LeBoit P.E.
        Melanoma ex blue nevus: two cases resembling large plaque-type blue nevus with subcutaneous cellular nodules.
        J Cutan Pathol. 2012; 39: 1094-1099
        • Yeh I.
        • Fang Y.
        • Busam K.J.
        Melanoma arising in a large plaque-type blue nevus with subcutaneous cellular nodules.
        Am J Surg Pathol. 2012; 36: 1258-1263
        • Balazs M.
        • Adam Z.
        • Treszl A.
        • Begany A.
        • Hunyadi J.
        • Adany R.
        Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization.
        Cytometry. 2001; 46: 222-232
        • Alomari A.K.
        • Miedema J.R.
        • Carter M.D.
        • et al.
        DNA copy number changes correlate with clinical behavior in melanocytic neoplasms: proposal of an algorithmic approach.
        Mod Pathol. 2020; 33: 1307-1317
        • Bastian B.C.
        • LeBoit P.E.
        • Pinkel D.
        Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features.
        Am J Pathol. 2000; 157: 967-972
        • Lezcano C.M.
        • Yeh I.
        • Eslamdoost N.
        • et al.
        Expanding the spectrum of microscopic and cytogenetic findings associated with Spitz tumors with 11p gains.
        Am J Surg Pathol. 2021; 45: 277-285
        • Wiesner T.
        • Kutzner H.
        • Cerroni L.
        • Mihm Jr., M.C.
        • Busam K.J.
        • Murali R.
        Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy.
        Pathology. 2016; 48: 113-131
        • Yeh I.
        • de la Fouchardiere A.
        • Pissaloux D.
        • et al.
        Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions.
        Am J Surg Pathol. 2015; 39: 581-591
        • Wiesner T.
        • Obenauf A.C.
        • Murali R.
        • et al.
        Germline mutations in BAP1 predispose to melanocytic tumors.
        Nat Genet. 2011; 43: 1018-1021
        • Nguyen T.L.
        • Theos A.
        • Kelly D.R.
        • Busam K.
        • Andea A.A.
        Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall.
        Am J Dermatopathol. 2013; 35: e16-e21
        • van Houten A.H.
        • van Dijk M.C.
        • Schuttelaar M.L.
        Proliferative nodules in a giant congenital melanocytic nevus-case report and review of the literature.
        J Cutan Pathol. 2010; 37: 764-776
        • Yelamos O.
        • Arva N.C.
        • Obregon R.
        • et al.
        A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children.
        Am J Surg Pathol. 2015; 39: 405-415
        • Gerami P.
        • Jewell S.S.
        • Morrison L.E.
        • et al.
        Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma.
        Am J Surg Pathol. 2009; 33: 1146-1156
        • Gerami P.
        • Beilfuss B.
        • Haghighat Z.
        • Fang Y.
        • Jhanwar S.
        • Busam K.J.
        Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi.
        J Cutan Pathol. 2011; 38: 329-334
        • Morey A.L.
        • Murali R.
        • McCarthy S.W.
        • Mann G.J.
        • Scolyer R.A.
        Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation.
        Pathology. 2009; 41: 383-387
        • Clemente C.
        • Bettio D.
        • Venci A.
        • et al.
        A fluorescence in situ hybridization (fish) procedure to assist in differentiating benign from malignant melanocytic lesions.
        Pathologica. 2009; 101: 169-174
        • Vergier B.
        • Prochazkova-Carlotti M.
        • de la Fouchardiere A.
        • et al.
        Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases.
        Mod Pathol. 2010; 24: 613-623
        • Moore M.W.
        • Gasparini R.
        Fish as an effective diagnostic tool for the management of challenging melanocytic lesions.
        Diagn Pathol. 2011; 6: 76
        • Boi S.
        • Leonardi E.
        • Fasanella S.
        • Cantaloni C.
        • Micciolo R.
        The four-color FISH probe in the diagnosis of melanocytic lesions.
        J Eur Acad Dermatol Venereol. 2010; 24: 1235-1236
        • North J.P.
        • Vetto J.T.
        • Murali R.
        • White K.P.
        • White Jr., C.R.
        • Bastian B.C.
        Assessment of copy number status of chromosomes 6 and 11 by fish provides independent prognostic information in primary melanoma.
        Am J Surg Pathol. 2011; 35: 1146-1150
        • Requena C.
        • Rubio L.
        • Traves V.
        • et al.
        Fluorescence in situ hybridization for the differential diagnosis between spitz naevus and spitzoid melanoma.
        Histopathology. 2012; 61: 899-909
        • Massi D.
        • Cesinaro A.M.
        • Tomasini C.
        • et al.
        Atypical spitzoid melanocytic tumors: a morphological, mutational, and FISH analysis.
        J Am Acad Dermatol. 2011; 64: 919-935
        • Gaiser T.
        • Kutzner H.
        • Palmedo G.
        • et al.
        Classifying ambiguous melanocytic lesions with fish and correlation with clinical long-term follow up.
        Mod Pathol. 2010; 23: 413-419
        • Gammon B.
        • Beilfuss B.
        • Guitart J.
        • Gerami P.
        Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe.
        Am J Surg Pathol. 2012; 36: 81-88
        • Gerami P.
        • Li G.
        • Pouryazdanparast P.
        • et al.
        A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms.
        Am J Surg Pathol. 2012; 36: 808-817
        • Gerami P.
        • Scolyer R.A.
        • Xu X.
        • et al.
        Risk assessment for atypical spitzoid melanocytic neoplasms using fish to identify chromosomal copy number aberrations.
        Am J Surg Pathol. 2013; 37: 676-684
        • Bernardes de Jesus B.
        • Blasco M.A.
        Telomerase at the intersection of cancer and aging.
        Trends Genet. 2013; 29: 513-520
        • Horn S.
        • Figl A.
        • Rachakonda P.S.
        • et al.
        Tert promoter mutations in familial and sporadic melanoma.
        Science. 2013; 339: 959-961
        • Andres-Lencina J.J.
        • Rachakonda S.
        • Garcia-Casado Z.
        • et al.
        Tert promoter mutation subtypes and survival in stage I and II melanoma patients.
        Int J Cancer. 2019; 144: 1027-1036
        • Bai X.
        • Kong Y.
        • Chi Z.
        • et al.
        MAPK pathway and TERT promoter gene mutation pattern and its prognostic value in melanoma patients: a retrospective study of 2,793 cases.
        Clin Cancer Res. 2017; 23: 6120-6127
        • de Unamuno Bustos B.
        • Murria Estal R.
        • Perez Simo G.
        • et al.
        Lack of tert promoter mutations in melanomas with extensive regression.
        J Am Acad Dermatol. 2016; 74: 570-572
        • Heidenreich B.
        • Nagore E.
        • Rachakonda P.S.
        • et al.
        Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma.
        Nat Commun. 2014; 5: 3401
        • Macerola E.
        • Loggini B.
        • Giannini R.
        • et al.
        Coexistence of TERT promoter and BRAF mutations in cutaneous melanoma is associated with more clinicopathological features of aggressiveness.
        Virchows Arch. 2015; 467: 177-184
        • Nagore E.
        • Heidenreich B.
        • Rachakonda S.
        • et al.
        TERT promoter mutations in melanoma survival.
        Int J Cancer. 2016; 139: 75-84
        • Nagore E.
        • Rachakonda S.
        • Kumar R.
        TERT promoter mutations in melanoma survival.
        Oncotarget. 2019; 10: 1546-1548
        • Populo H.
        • Boaventura P.
        • Vinagre J.
        • et al.
        TERT promoter mutations in skin cancer: the effects of sun exposure and x-irradiation.
        J Invest Dermatol. 2014; 134: 2251-2257
        • Roh M.R.
        • Park K.H.
        • Chung K.Y.
        • Shin S.J.
        • Rha S.Y.
        • Tsao H.
        Telomerase reverse transcriptase (TERT) promoter mutations in Korean melanoma patients.
        Am J Cancer Res. 2017; 7: 134-138
        • Thomas N.E.
        • Edmiston S.N.
        • Tsai Y.S.
        • et al.
        Utility of TERT promoter mutations for cutaneous primary melanoma diagnosis.
        Am J Dermatopathol. 2019; 41: 264-272
        • Diaz A.
        • Puig-Butille J.A.
        • Munoz C.
        • et al.
        TERT gene amplification is associated with poor outcome in acral lentiginous melanoma.
        J Am Acad Dermatol. 2014; 7183941
        • Diaz A.
        • Puig-Butille J.A.
        • Valera A.
        • et al.
        Tert and aurka gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization.
        J Mol Diagn. 2014; 16: 198-206
        • Stark M.S.
        • Tan J.M.
        • Tom L.
        • et al.
        Whole-exome sequencing of acquired nevi identifies mechanisms for development and maintenance of benign neoplasms.
        J Invest Dermatol. 2018; 138: 1636-1644
        • Colebatch A.J.
        • Ferguson P.
        • Newell F.
        • et al.
        Molecular genomic profiling of melanocytic nevi.
        J Invest Dermatol. 2019; 139: 1762-1768
        • Walton K.E.
        • Garfield E.M.
        • Zhang B.
        • et al.
        The role of TERT promoter mutations in differentiating recurrent nevi from recurrent melanomas: a retrospective, case-control study.
        J Am Acad Dermatol. 2019; 80: 685-693
        • Lee S.
        • Barnhill R.L.
        • Dummer R.
        • et al.
        Tert promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms.
        Sci Rep. 2015; 511200
        • Clarke L.E.
        • Warf B.M.
        • Flake 2nd, D.D.
        • et al.
        Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma.
        J Cutan Pathol. 2015; 42: 244-252
        • Clarke L.E.
        • Flake 2nd, D.D.
        • Busam K.
        • et al.
        An independent validation of a gene expression signature to differentiate malignant melanoma from benign melanocytic nevi.
        Cancer. 2017; 123: 617-628
        • Ko J.S.
        • Matharoo-Ball B.
        • Billings S.D.
        • et al.
        Diagnostic distinction of malignant melanoma and benign nevi by a gene expression signature and correlation to clinical outcomes.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 1107-1113
        • Minca E.C.
        • Al-Rohil R.N.
        • Wang M.
        • et al.
        Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions.
        Mod Pathol. 2016; 29: 832-843
        • Estrada S.
        • Shackelton J.
        • Cleaver N.
        • et al.
        Development and validation of a diagnostic 35-gene expression profile test for ambiguous or difficult-to-diagnose suspicious pigmented skin lesions.
        Skin J Cutan Med. 2020; 4: 506-522
        • Isaac A.K.
        • Lertsburapa T.
        • Pathria Mundi J.
        • Martini M.
        • Guitart J.
        • Gerami P.
        Polyploidy in spitz nevi: a not uncommon karyotypic abnormality identifiable by fluorescence in situ hybridization.
        Am J Dermatopathol. 2010; 32: 144-148
        • Carter M.D.
        • Durham A.B.
        • Miedema J.R.
        • et al.
        Molecular testing of borderline cutaneous melanocytic lesions: SNP array is more sensitive and specific than FISH.
        Hum Pathol. 2019; 86: 115-123
        • Members A.U.C.C.
        • Fung M.A.
        • Vidal C.I.
        • et al.
        Appropriate use criteria for ancillary diagnostic testing in dermatopathology: new recommendations for 11 tests and 220 clinical scenarios from the American Society of Dermatopathology appropriate use criteria committee.
        J Cutan Pathol. 2022; 49: 231-245
        • Emanuel P.O.
        • Andea A.A.
        • Vidal C.I.
        • et al.
        Evidence behind the use of molecular tests in melanocytic lesions and practice patterns of these tests by dermatopathologists.
        J Cutan Pathol. 2018; 45: 839-846
        • Vidal C.I.
        • Armbrect E.A.
        • Andea A.A.
        • et al.
        Appropriate use criteria in dermatopathology: initial recommendations from the American Society of Dermatopathology.
        J Cutan Pathol. 2018; 45: 563-580