Analysis of recurrent molecular alterations in phyllodes tumour of breast: insights into prognosis and pathogenesis


      Phyllodes tumour (PT) of breast is a rare biphasic neoplasm. Recent next generation sequencing analyses had revealed novel genetic alterations in PT but lacked a further characterisation of their relationship to different PT features and outcome. Here, using targeted sequencing, we examined a panel of 90 recurrently altered or cancer related genes in 88 PT samples (including 49 benign, 25 borderline and 14 malignant PT). Twenty-three genes showed alterations in at least 8.0% of cases. Alterations were significantly higher with an increasing grade of PT (p=0.033), particularly for copy number alterations. The top ten alterations were TERT promoter (58.0%), MED12 (53.4%), RARA (22.8%), FLNA (19.3%), SETD2 (15.9%), SYNE1 (18.2%), PCLO (15.9%), KMT2D (14.3%), CDKN2A (15.9%) and DNAH11 (14.8%). Alterations in CDKN2A/B, EGFR, TP53, PIK3CA, PTEN and ARID1B (p≤0.039) were associated with a higher grade. Analysing alterations based on common pathways indicated a significant correlation of cell cycle pathway and epigenetic alterations with a higher PT grade (p=0.036 and 0.075 respectively). Interestingly, recurrences were not correlated with tumour grade, but related to the presence of RARA mutation (p=0.011) and the absence of alterations in epigenetic pathway (p=0.031). Analysis of synchronous pair of PT showed more differences in gene mutations with divergent MED12 mutation. By contrast, the recurrent samples showed similar genetic alterations as the primary tumours. In summary, we characterised genetic alterations in PTs of different grades and confirmed the recurrent alterations observed in earlier studies. In addition, current data implicated the roles of cell cycle, epigenetic and RARA changes in PT recurrence and tumourogenesis.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tse G.M.
        • Shin S.J.
        • Val-Bernal J.F.
        Fibroepithelial tumors and hamartomas of the breast.
        in: WHO Classification of Tumors Editorial Board, Editor. WHO Classification of Tumours of the Breast. IARC, Lyon2019: 163-172
        • Tan P.H.
        • Thike A.A.
        • Tan W.J.
        • et al.
        Predicting clinical behaviour of breast phyllodes tumours: a nomogram based on histological criteria and surgical margins.
        J Clin Pathol. 2012; 65: 69-76
        • Cani A.K.
        • Hovelson D.H.
        • McDaniel A.S.
        • et al.
        Next-gen sequencing exposes frequent MED12 mutations and actionable therapeutic targets in phyllodes tumors.
        Mol Cancer Res. 2015; 13: 613-619
        • Tsang J.Y.
        • Go E.M.
        • Tse G.M.
        Identification of clinically relevant alterations in phyllodes tumor of the breast by amplicon-based next-generation sequencing.
        Breast Cancer Res Treat. 2015; 151: 717-719
        • Piscuoglio S.
        • Ng C.K.
        • Murray M.
        • et al.
        Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression.
        J Pathol. 2016; 238: 508-518
        • Liu S.Y.
        • Joseph N.M.
        • Ravindranathan A.
        • et al.
        Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.
        Mod Pathol. 2016; 29: 1012-1027
        • Nozad S.
        • Sheehan C.E.
        • Gay L.M.
        • et al.
        Comprehensive genomic profiling of malignant phyllodes tumors of the breast.
        Breast Cancer Res Treat. 2017; 162: 597-602
        • Kim J.Y.
        • Yu J.H.
        • Nam S.J.
        • et al.
        Genetic and clinical characteristics of phyllodes tumors of the breast.
        Transl Oncol. 2018; 11: 18-23
        • Nasir N.D.
        • Ng C.C.Y.
        • Rajasegaran V.
        • et al.
        Genomic characterisation of breast fibroepithelial lesions in an international cohort.
        J Pathol. 2019; 249: 447-460
        • Tan J.
        • Ong C.K.
        • Lim W.K.
        • et al.
        Genomic landscapes of breast fibroepithelial tumors.
        Nat Genet. 2015; 47: 1341-1345
        • Martin M.
        Cutadapt removes adapter sequences from high-throughput sequencing reads.
        EMBnet J. 2021; 17: 10-12
        • Babraham Bioinformatics. FastQC
        (Cited Nov 2021)
        • Li H.
        Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
        arXiv. 2013; (26 May: 1303.3997v2)
        • Broad Institute. Picard
        (Cited Nov 2021)
        • Broad Institute. Gatk
        (Cited Nov 2021)
        • GitHub. Freebayes
        (Cited Nov 2021)
        • Benjamin D.
        • Sato T.
        • Cibulskis K.
        • Getz G.
        • Stewart C.
        • Lichtenstein L.
        Calling somatic SNVs and indels with Mutect2.
        bioRxiv. 2019; 2 Dec;
        • Rimmer A.
        • Phan H.
        • Mathieson I.
        • et al.
        Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications.
        Nat Genet. 2014; 46: 912-918
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • et al.
        The sequence alignment/map format and SAMtools.
        Bioinformatics. 2009; 25: 2078-2079
        • Lai Z.
        • Markovets A.
        • Ahdesmaki M.
        • et al.
        VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research.
        Nucleic Acids Res. 2016; 44: e108
        • Koboldt D.C.
        • Chen K.
        • Wylie T.
        • et al.
        VarScan: variant detection in massively parallel sequencing of individual and pooled samples.
        Bioinformatics. 2009; 25: 2283-2285
        • Wang K.
        • Li M.
        • Hakonarson H.
        ANNOVAR: functional annotation of genetic variants from next-generation sequencing data.
        Nucleic Acids Res. 2010; 38: e164
        • Robinson J.T.
        • Thorvaldsdóttir H.
        • Winckler W.
        • et al.
        Integrative genomics viewer.
        Nat Biotechnol. 2011; 29: 24-26
        • Talevich E.
        • Shain A.H.
        • Botton T.
        • Bastian B.C.
        CNVkit: genome-wide copy number detection and visualization from targeted sequencing.
        PLOS Computat Biol. 2014; 12e1004873
        • Tsang J.Y.
        • Lai S.T.
        • Ni Y.B.
        • et al.
        SETD2 alterations and histone H3K36 trimethylation in phyllodes tumor of breast.
        Breast Cancer Res Treat. 2021; 187: 339-347
        • Tay T.K.Y.
        • Guan P.
        • Loke B.N.
        • et al.
        Molecular insights into paediatric breast fibroepithelial tumours.
        Histopathology. 2018; 73: 809-818
        • Pareja F.
        • Geyer F.C.
        • Kumar R.
        • et al.
        Phyllodes tumors with and without fibroadenoma-like areas display distinct genomic features and may evolve through distinct pathways.
        NPJ Breast Cancer. 2017; 3: 40
        • Chang H.Y.
        • Koh V.C.Y.
        • Nasir N.D.
        • et al.
        MED12, TERT and RARA in fibroepithelial tumours of the breast.
        J Clin Pathol. 2020; 73: 51-56
        • Bullerdiek J.
        • Rommel B.
        Factors targeting MED12 to drive tumorigenesis?.
        F1000Res. 2018; 7: 359
        • Lim W.K.
        • Ong C.K.
        • Tan J.
        • et al.
        Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.
        Nat Genet. 2014; 46: 877-880
        • Liu W.
        • Ma Q.
        • Wong K.
        • et al.
        Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release.
        Cell. 2013; 155: 1581-1595
        • Kang Y.K.
        • Guermah M.
        • Yuan C.X.
        • Roeder R.G.
        The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro.
        Proc Natl Acad Sci USA. 2002; 99: 2642-2647
        • De Braekeleer E.
        • Douet-Guilbert N.
        • De Braekeleer M.
        RARA fusion genes in acute promyelocytic leukemia: a review.
        Expert Rev Hematol. 2014; 7: 347-357
        • Hua S.
        • Kittler R.
        • White K.P.
        Genomic antagonism between retinoic acid and estrogen signaling in breast cancer.
        Cell. 2009; 137: 1259-1271
        • Froimchuk E.
        • Jang Y.
        • Ge K.
        Histone H3 lysine 4 methyltransferase KMT2D.
        Gene. 2017; 627: 337-342
        • Mo R.
        • Rao S.M.
        • Zhu Y.J.
        Identification of the MLL2 complex as a coactivator for estrogen receptor alpha.
        J Biol Chem. 2006; 281: 15714-15720
        • Cheng D.
        • Vemulapalli V.
        • Lu Y.
        • et al.
        CARM1 methylates MED12 to regulate its RNA-binding ability.
        Life Sci Alliance. 2018; 1e201800117
        • Chen M.C.
        • Hsu S.L.
        • Lin H.
        • Yang T.Y.
        Retinoic acid and cancer treatment.
        Biomedicine (Taipei). 2014; 4: 22
        • Cooper J.P.
        • Reynolds C.P.
        • Cho H.
        • Kang M.H.
        Clinical development of fenretinide as an antineoplastic drug: pharmacology perspectives.
        Exp Biol Med (Maywood). 2017; 242: 1178-1184
        • Thomas J.S.
        • El-Khoueiry A.B.
        • Maurer B.J.
        • et al.
        A phase I study of intravenous fenretinide (4-HPR) for patients with malignant solid tumors.
        Cancer Chemother Pharmacol. 2021; 87: 525-532
        • Mokbel K.
        • Ghilchik M.
        • Parris C.N.
        • Newbold R.F.
        Telomerase activity in phyllodes tumours.
        Eur J Surg Oncol. 1999; 25: 352-355
        • Bell R.J.
        • Rube H.T.
        • Xavier-Magalhaes A.
        • et al.
        Understanding TERT promoter mutations: a common path to immortality.
        Mol Cancer Res. 2016; 14: 315-323
        • Tsang J.Y.S.
        • Hui Y.K.
        • Lee M.A.
        • et al.
        Association of clinicopathological features and prognosis of TERT alterations in phyllodes tumor of breast.
        Sci Rep. 2018; 8: 3881
        • Weinstein J.N.
        • Collisson E.A.
        • et al.
        • Cancer Genome Atlas Research Network
        The cancer genome atlas pan-cancer analysis project.
        Nat Genet. 2013; 45: 1113-1120
        • Lae M.
        • Vincent-Salomon A.
        • Savignoni A.
        • et al.
        Phyllodes tumors of the breast segregate in two groups according to genetic criteria.
        Mod Pathol. 2007; 20: 435-444
        • Kuijper A.
        • Snijders A.M.
        • Berns E.M.
        • et al.
        Genomic profiling by array comparative genomic hybridization reveals novel DNA copy number changes in breast phyllodes tumours.
        Cell Oncol. 2009; 31: 31-39
        • Jones A.M.
        • Mitter R.
        • Springall R.
        • et al.
        A comprehensive genetic profile of phyllodes tumours of the breast detects important mutations, intra-tumoral genetic heterogeneity and new genetic changes on recurrence.
        J Pathol. 2008; 214: 533-544
        • Cimino-Mathews A.
        • Hicks J.L.
        • Sharma R.
        • et al.
        A subset of malignant phyllodes tumors harbors alterations in the Rb/p16 pathway.
        Hum Pathol. 2013; 44: 2494-2500
        • Ortega-Molina A.
        • Boss I.W.
        • Canela A.
        • et al.
        The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.
        Nat Med. 2015; 21: 1199-1208
        • Chen R.
        • Zhao W.Q.
        • Fang C.
        • Yang X.
        • Ji M.
        Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers.
        J Cancer. 2020; 11: 3349-3356
        • Lv S.
        • Ji L.
        • Chen B.
        • et al.
        Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4.
        Oncogene. 2018; 37: 1354-1368
        • Dhar S.S.
        • Zhao D.
        • Lin T.
        • et al.
        MLL4 is required to maintain broad H3K4me3 peaks and super-enhancers at tumor suppressor genes.
        Mol Cell. 2018; 70: 825-841
        • Xu H.
        • Xiao Q.
        • Fan Y.
        • et al.
        Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-kappaB signaling.
        Cancer Med. 2017; 6: 1399-1408