Table 2 Minimum recommendation of phenotype and units reported in laboratories performing B cell subsets

<table>
<thead>
<tr>
<th>Subset</th>
<th>Phenotype</th>
<th>Unit(s) reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total B cell</td>
<td>CD19⁺</td>
<td>% of PBL</td>
</tr>
<tr>
<td>Naive B cell</td>
<td>CD19⁺ IgD⁺ IgM⁺CD27⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Marginal zone (non-switched memory B cell)</td>
<td>CD19⁺ IgD⁺ IgM⁺CD27⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Transitional B cell</td>
<td>CD19⁺CD38⁻IgM⁺IgD⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Switched memory B cell</td>
<td>CD19⁺IgD⁺IgM⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>CD21low</td>
<td>CD19⁺CD38⁻lowCD21low</td>
<td>% of B cells</td>
</tr>
</tbody>
</table>

should be reported in the context of age appropriate established biological reference intervals and optimally, reported with an appropriate clinical interpretive comment. This is especially important in the context of treatment [access to intravenous immunoglobulins (IVIg) in Australia], which requires patients with CVID to meet the ESID criteria, which includes B cell phenotype.5,7

A significant amount of literature now exists on age-specific biological reference intervals, including paediatric populations.2,5,10–12 Several studies have demonstrated the age dependent dynamic of B cell numbers and composition in peripheral blood, especially in children.10,11 Adults have been shown to maintain relatively stable numbers of both immature/transitional and naïve B cells, whereas switched memory B cells and newly generated plasma cell numbers gradually decrease in subjects older than 60 years.12 Reference intervals used by the laboratory should be documented as outlined in ISO 15189: Medical laboratories - Requirements for quality and competence.

These recommendations aim to standardise the reporting of B cell subset enumeration in routine clinical practice to increase the clinical utility of this assay. These recommendations are the minimum requirements that Australasian laboratories should follow when performing B cell subsets.

Conflicts of interest and sources of funding: The authors state that there are no conflict of interest to disclose.

Louise Wienholt⁴, Michael Lane²,³, Alice Grey⁴, Tiffany Hughes⁵

1 The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP), St Leonards, Sydney, NSW, Australia; ²Division of Immunology, Pathology Queensland, Brisbane, Qld, Australia; ³Faculty of Medicine, University of Queensand, Brisbane, Qld, Australia; ⁴Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; ⁵Clinical Immunology and Allergy Department, The Royal Adelaide Hospital, Adelaide, SA, Australia

Contact Louise Wienholt.
E-mail: louise.wienholt@rcpaqap.com.au

1 Berglund LJ, Wong SWJ, Fulcher DA. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology 2008; 40: 288–94.

DOI: https://doi.org/10.1016/j.pathol.2019.04.013

Simultaneous cytomegalovirus glomerulitis and BK virus nephropathy leading to kidney allograft loss

Sir,

Viral reactivations are a major cause of morbidity and mortality in immunocompromised patients. In kidney transplant recipients, BK polyomavirus is one of the most challenging opportunistic pathogens due to high prevalence, frequent reactivation and poor graft outcome. BK virus belongs to the family of Polyomaviridae and has a tropism for the renourinary tract which represents a site of viral latency. BK virus nephropathy (BKN) is usually encountered in a context of over-immunosuppression and affects up to 10% of kidney transplant recipients, resulting in 60% graft loss.¹ Kidney allograft biopsy remains the gold standard for BKN diagnosis. By contrast, CMV (cytomegalovirus) nephropathy is rare, detected in <1% of biopsied renal allografts,² but CMV infection or disease is an independent risk factor for patient death and long-term allograft dysfunction. Although BK and CMV serological reactivations may be associated in the kidney transplantation context,³,⁴ histologically-proven co-infection in the kidney allograft is an exceptional finding. We report a case of simultaneous CMV glomerulitis and BKN leading to kidney allograft loss.

A 68-year-old woman with end-stage renal disease secondary to unknown glomerulopathy received a kidney from a cadaveric donor, with graft function (serum creatinine level 81 μmol/L) immediately after transplantation. CMV status was donor-positive (D+)/recipient-positive (R+). The patient received basiliximab, tacrolimus, mycophenolate mofetil and methylprednisolone for induction, followed by maintenance immunosuppression with tacrolimus, mycophenolate mofetil,
and methylprednisolone. Infection prophylaxis included valganciclovir and sulfamethoxazole-trimethoprim. Tacrolimus was replaced with cyclosporin 2 months after transplantation due to new-onset diabetes. Three months after transplantation, an acute rejection episode with isolated vasculitis (v2 according to the Banff classification) was resolved by treatment with thymoglobulin and methylprednisolone (serum creatinine concentration 93 μmol/L). The patient developed BK viraemia without CMV infection six months post-transplantation, leading to a reduction of immunosuppression. Prophylaxis with valganciclovir was stopped 6 months post-transplantation.

The patient was then lost to follow-up, but was subsequently referred to our nephrology department for evaluation of an increase in serum creatinine concentration (300 μmol/L) 34 months post-transplantation. The physical examination was unremarkable. The patient had a proteinuria/creatininuria ratio of 52 mg/mmol, and donor-specific antibodies were undetectable. Trough cyclosporin concentration was satisfactory (75 ng/mL). The area under the curve for mycophenolic acid concentration was 19.2 mg.h/L (normal range 30–60 mg.h/L). Our patient also displayed liver cytolysis (alanine aminotransferase and γ-glutamyl transferase levels of 456 IU/L and 769 IU/L, respectively) and anaemia (haemoglobin concentration 7.3 g/dL) with normal leukocyte and platelet counts. Polymerase chain reaction on plasma detected 39,900 copies/mL for CMV and 4,620,000 copies/mL for BK virus.

A biopsy was performed on the transplanted kidney. The renal biopsy specimen consisted of renal cortex with seven glomeruli including three obsolescent glomeruli. Two glomeruli displayed capillary occlusion due to swollen endothelial cells with dystrophic voluminous nuclei suggestive of viral infection (Fig. 1A). Multiples tubules showed flattened epithelium with nuclear enlargement and inclusions (Fig. 1B). Chronic tubulointerstitial damage was extensive (50% of cortex sampled) with focal mononuclear cell infiltration (t1 according to Banff classification). No tubulitis lesions were observed. C4d was negative in peritubular capillaries. Immunohistochemistry confirmed BKN and CMV glomerulitis (Fig. 2) in a context of CMV disease with kidney and liver injury. Immunohistochemical staining for CMV was negative in the tubular and interstitial compartments.

The immunosuppressive regimen was reduced and mycophenolate mofetil was replaced with leflunomide. CMV viral load increased despite intravenous ganciclovir. Ganciclovir-resistant CMV disease was clinically suspected, but CMV genotypic resistance testing was inconclusive. Maribavir treatment was initiated, leading to the resolution of CMV viraemia. Unfortunately, graft function declined further in a context of severe interstitial fibrosis and persistent BK viraemia, necessitating the initiation of renal replacement therapy.

BK virus tubulo-interstitial nephritis is characterised by acute tubular injury, interstitial inflammation, tubulitis and a viral cytopathic effect observed in renal tubular cells displaying a gelatinous basophilic inclusion replacing the...

Fig. 1 (A) Glomerulitis: occlusion of glomerular capillaries by swollen endothelial cells (arrow) with dystrophic and voluminous nuclei suggestive of viral infection (Masson’s trichrome). (B) Nuclear enlargement (arrow) and inclusions (arrowhead) in necrotic tubular epithelial cells with denudation of the tubular basement membrane (H&E).

Fig. 2 (A) Anti-CMV immunohistochemistry revealing nuclear positivity in swollen endothelial cells, confirming CMV-mediated glomerulitis. (B) Anti-SV40 immunohistochemistry revealing nuclear positivity in dystrophic tubular epithelial cells, confirming BK virus nephropathy.
nuclear chromatin. BK virus infects only epithelial cells, including podocyte and parietal epithelial cells, potentially leading to crescent formation in a subset of patients. Due to sampling variation and histological heterogeneity, absence of BK virus cytopathic changes may be a source of underdiagnosis. CMV nephropathy may manifest with various histopathological lesions. Tubulo-interstitial nephritis is the most common pattern of CMV infection in the kidney allograft. In contrast to BK virus, CMV may affect endothelial cells leading to CMV glomerulopathy, thrombotic microangiopathy or vasculitis. Viral infections may also represent ‘second hits’ that lead to glomerular injury in transplanted kidneys with two apolipoprotein L1 (APOL1) risk variants. De novo collapsing focal segmental glomerulosclerosis has been reported in the context of BK or CMV viraemia in these recipients.

CMV glomerulitits and BKN must be differentiated from humoral rejection-mediated glomerulitits and cellular rejection, respectively, as these conditions are treated with opposing therapeutic regimens. Our case highlights the contribution of SV40 (large T antigen) and CMV immunohistochemistry to correct diagnosis. However, acute T-cell mediated rejection which resembles and overlaps with BKN occurs in 21% of BKN and remains a challenge for the pathologist.

As far as we know, only one case of concurrent CMV glomerulitis and BKN has been reported, in a donor negative (D−R+) CMV context, 11 weeks post-transplantation with stable graft function at the last follow-up. Conflicting data have been published concerning the association of CMV and BK viraemias in the kidney transplantation context. Several studies suggested an association between CMV and BK virus reactivations, however Elfadawy et al. showed that BK viraemia was not statistically associated with subsequent CMV viraemia in an interventional study. Recently, a large prospective multicentre study confirmed that CMV and BK reactivations were significantly associated in the kidney transplantation context. Interestingly, the risk of BK virus-associated haemorrhagic cystitis is also associated with CMV viraemia after allogenic haematopoietic stem cell transplantation. A strong association between BK viraemia and CMV infection may simply mirror high-dose immunosuppression. It has also been suggested that BK viraemia may occur after CMV reactivation due to immunomodulatory properties of CMV, as production of suppressive cytokines. Conversely, CMV reactivation may occur after BK virus infection due to the permissive effect of BK virus. In our patient, BK viraemia preceded CMV viraemia and the trough cyclosporin level and the area under the curve of mycophenolic acid were consistent with reduced immunosuppression. However, we cannot speculate about the relationship between CMV and BK virus infections in this case.

Both our patient and the previously reported case were CMV R+. CMV infection risk is higher in CMV seronegative patients receiving CMV D− allograft. Nevertheless, CMV D+/R+ group present an intermediate risk for active CMV infection and can encounter late onset CMV disease. Intriguingly, the highest incidence of BK viraemia is noted in intermediate CMV risk patients (D−/R+ and D+/R+) and positive recipient serostatus for CMV is a statistically significant risk for the development of BK viraemia. Seropositivity of donor is associated with CMV-BK combined reactivation.

It has been suggested that combined reactivation may have a deep impact on renal function one-year post transplantation, even at low viral load levels. Patients with BK-CMV combined reactivation, even at moderate rather than high levels, have lower graft function than those with no viral reactivation.

Our case histologically illustrates the epidemiological association between BK and CMV reactivations which may severely impact kidney allograft function. This case of simultaneous CMV and BK virus nephropathy leading to graft loss advocates for close monitoring of CMV viraemia when BK viraemia is detected, and vice versa. Nephrologists should also be aware of this possible association in kidney allograft biopsy.

Conflicts of interest and sources of funding: The authors state that there are no conflicts of interest to disclose.

Anissa Moktefi1,2, Tomek Kofman3, Hamza Sakhi2,3, Marie Matignon2,3, Philippe Grimbert4,5

1 APHP (Assistance Publique-Hôpitaux de Paris), Pathology Department, Groupe Hospitalier Henri-Mondor/Albert Chenevier, Créteil, France; 2 Université Paris-Est Créteil, (UPEC), DHU (Département Hospitalo-Universitaire), VIC (Virus-Immunité-Cancer), IMRB (Institut Mondor de Recherche Biomédicale), Équipe 2, INSERM U 955, Créteil, France; 3 AP-HP (Assistance Publique-Hôpitaux de Paris), Nephrology and Renal Transplantation Department, Institut Francilien de Recherche en Néphrologie et Transplantation (IFRNT), Groupe Hospitalier Henri-Mondor/Albert Chenevier, Créteil, France

Contact Dr Anissa Moktefi.
E-mail: anissa.moktefi@aphp.fr

Sir,

Post-transplant lymphoproliferative disorders (PTLDs) are uncommon lymphoid and/or plasmacytic proliferations that can occur in patients after undergoing solid organ or haematopoietic stem cell transplantation, secondary to extrinsic immunosuppression inherent in these procedures. In the context of haematopoietic stem cell transplantation, the large majority of reported PTLDs occur in patients who received allogenic haematopoietic stem cell transplantation (AlloHSCT). Only a few cases of PTLD following autologous haematopoietic stem cell transplantation (AH SCT) have been reported.\(^1\)\(^-\)\(^^6\) We herein report the rare interesting case of an Epstein–Barr virus (EBV) negative monomorphic B-cell plasmacytoma post-transplant lymphoproliferative disorder (PTLD), developing in a patient who received AH SCT for treatment of advanced stage classic Hodgkin lymphoma (CHL).

A 23-year-old male presented to our institution 4 years previously with fever, weight loss and shortness of breath of 2–4 months duration. Positron emission tomography (PET) scan performed showed a fluorodeoxyglucose (FDG) avid, large, bulky, 10.6 cm anterior mediastinal mass, multiple FDG avid lymph nodes above and below the diaphragm, as well as multiple FDG lesions in the axial skeleton. A biopsy of the anterior mediastinal mass was performed, and the patient was diagnosed with nodular sclerosis CHL (Fig. 1A). The patient was treated with six cycles of adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) and radiotherapy to the mediastinum. The patient achieved complete remission based on positron emission tomography (PET) scan findings after the treatment. However, 2 years later he developed new FDG avid lymphadenopathy above and below the diaphragm, as well as new FDG avid iliac bone lesions. Biopsy of the iliac bone showed disease relapse of CHL. The patient received platinum-based salvage chemotherapy for the disease relapse. After harvesting of peripheral blood stem cells, he underwent AH SCT. The conditioning regimen consisted of carmustine, etoposide, cytarabine and melphalan. Unmanipulated haematopoietic stem cells were administered at a cell dose of \(2.78 \times 10^6\) CD34\(^+\) cells/kg.

The patient had an episode of culture negative neutropenic fever post-AH SCT, from which he subsequently recovered. He was not put on any immunosuppressive drug regimen post-AH SCT. Three and a half months following AH SCT, the follow-up PET scan showed new FDG avid left submental and level II cervical lymph nodes. An excision biopsy of a left level II cervical lymph node was performed. On histology, the cervical lymph node architecture was preserved with presence of reactive lymphoid follicles. There were increased numbers of small mature plasma cells noted in the paracortical areas and sinuses (Fig. 1B). No neoplastic Reed–Sternberg cells were seen. The histological diagnosis