SIR,

The enumeration of B cell subsets by flow cytometry is increasingly being performed as a routine diagnostic test in laboratories, both in Australasia and internationally. Results of pilot External Quality Assurance (EQA) programs performed by The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQP) have shown that at least 16 Australasian pathology laboratories are routinely reporting B cell subset panels. These pilot studies have also revealed a marked discrepancy in the panels (number and type of fluorochromes used), as well as the reporting algorithm (if cell populations are reported as % of total lymphocytes or % of B cells). This has led to significant variation in the values of B cell subsets reported. In response to this, a review was undertaken to determine the minimum standards that laboratories should adhere to when reporting B cell subsets by flow cytometric methods.

The reduction or absence of B cell populations have been linked to a range of immunodeficiency syndromes including common variable immunodeficiency disorder (CVID). CVID is a complex disease that predisposes patients to recurrent and severe infections. Diagnosis can be difficult and may be delayed due to the complex clinical phenotypes, that in addition to infections, may include lymphoproliferative, granulomatous and/or autoimmune manifestations. B cell phenotyping may help to identify and classify patients earlier, allowing for timely and appropriate therapy and clinical interventions, minimising the significant incidence of clinical comorbidities and complications often seen in CVID.

Currently the diagnosis of CVID is based on the European Society for Immunodeficiency (ESID) diagnostic criteria of CVID. These criteria require defined clinical presentations, together with a marked decrease of IgG and IgA with or without low IgM levels (measured at least twice; with results at least 2 standard deviations lower than normal age appropriate levels) plus laboratory tests confirming either poor antibody response to vaccines and/or low switched memory B cells (<70% of age-related normal value). In addition to this, secondary causes of hypogammaglobulinaemia must be excluded, and the diagnosis must be established after 4 years of age with no evidence of profound T cell deficiency.

Three seminal papers have proposed phenotypic and prognostic classification criteria for CVID patients based on B cell subpopulations. These are known as the ‘Freiburg’, ‘Paris’ and ‘Euroclass’ classifications. Each classification has methodological variations, which make the interpretation of results in routine clinical practice difficult. To improve the standardisation of results reported by Australian laboratories, we undertook a review of the classifications to establish minimum reporting requirements for diagnostic pathology laboratories who report B cell subset results used in the clinical characterisation of CVID (Table 1).

Based on this analysis, the following minimum recommendations are advised to provide clinically relevant information in the reporting of B cell subsets.

Recommendation 1: Sample type

Samples should be collected in ethylenediaminetetraacetic acid (EDTA). The flow cytometric enumeration of B cell populations has been validated using both fresh peripheral blood and isolated PBMC methods, with good agreement. B cell subsets should not be performed in the context of CVID when the total B cell count is <1% of peripheral blood lymphocytes (PBL). The correct clinical interpretation of laboratory results is an essential outcome of laboratory services. Quantitative data

Recommendation 2: Populations and units reported

To provide clinically useful information for the classification of CVID, at a minimum, the B cell populations shown in Table 2 should be reported.

Recommendation 3: Reference ranges and interpretive commentary

The correct clinical interpretation of laboratory results is an essential outcome of laboratory services. Quantitative data
Table 2 Minimum recommendation of phenotype and units reported in laboratories performing B cell subsets

<table>
<thead>
<tr>
<th>Subset</th>
<th>Phenotype</th>
<th>Unit(s) reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total B cell</td>
<td>CD19⁺</td>
<td>% of PBL</td>
</tr>
<tr>
<td>Naive B cell</td>
<td>CD19⁺ IgD⁺ IgM⁺ CD27⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Marginal zone (non-switched memory B cell)</td>
<td>CD19⁺ IgD⁺ IgM⁺ CD27⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Transitional B cell</td>
<td>CD19⁺CD38⁻⁺IgM⁺IgD⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>Switched memory B cell</td>
<td>CD19⁺ IgD⁺ IgM⁺CD27⁺</td>
<td>% of PBL and B cells</td>
</tr>
<tr>
<td>CD21low</td>
<td>CD19⁺CD38⁻⁺CD21⁺</td>
<td>% of B cells</td>
</tr>
</tbody>
</table>

should be reported in the context of age appropriate established biological reference intervals and optimally, reported with an appropriate clinical interpretive comment. This is especially important in the context of treatment [access to intravenous immunoglobulins (IVIg) in Australia], which requires patients with CVID to meet the ESID criteria, which includes B cell phenotype.8,9

A significant amount of literature now exists on age-specific biological reference intervals, including paediatric populations.2,8,20–12 Several studies have demonstrated the age dependent dynamic of B cell numbers and composition in peripheral blood, especially in children.8,11 Adults have been shown to maintain relatively stable numbers of both immature/transitional and naïve B cells, whereas switched memory B cells and newly generated plasma cell numbers gradually decrease in subjects older than 60 years.12 Reference intervals used by the laboratory should be documented as outlined in ISO 15189: Medical laboratories - Requirements for quality and competence.

These recommendations aim to standardise the reporting of B cell subset enumeration in routine clinical practice to increase the clinical utility of this assay. These recommendations are the minimum requirements that Australasian laboratories should follow when performing B cell subsets.

Conflicts of interest and sources of funding: The authors state that there are no conflict of interest to disclose.

Louise Wienholt¹, Michael Lane²,³, Alice Grey⁴, Tiffany Hughes⁵

1The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP), St Leonards, Sydney, NSW, Australia; ²Division of Immunology, Pathology Queensland, Brisbane, Qld, Australia; ³Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia; ⁴Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; ⁵Clinical Immunology and Allergy Department, The Royal Adelaide Hospital, Adelaide, SA, Australia

Contact Louise Wienholt.
E-mail: louise.wienholt@rcpaqap.com.au

1 Berglund LJ, Wong SWI, Fulcher DA. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology 2008; 40: 288–94.

DOI: https://doi.org/10.1016/j.pathol.2019.04.013

Simultaneous cytomegalovirus glomerulitis and BK virus nephropathy leading to kidney allograft loss

Sir,

Viral reactivations are a major cause of morbidity and mortality in immunocompromised patients. In kidney transplant recipients, BK polyomavirus is one of the most challenging opportunistic pathogens due to high prevalence, frequent reactivation and poor graft outcome. BK virus belongs to the family of Polyomaviridae and has a tropism for the renal-urinary tract which represents a site of viral latency. BK virus nephropathy (BKN) is usually encountered in a context of over-immunosuppression and affects up to 10% of kidney transplant recipients, resulting in 60% graft loss.1 Kidney allograft biopsy remains the gold standard for BKN diagnosis. By contrast, CMV (cytomegalovirus) nephropathy is rare, detected in <1% of biopsied renal allografts,2 but CMV infection or disease is an independent risk factor for patient death and long-term allograft dysfunction. Although BK and CMV serological reactivations may be associated in the kidney transplantation context,2,5 histologically-proven coinfection in the kidney allograft is an exceptional finding. We report a case of simultaneous CMV glomerulitis and BKN leading to kidney allograft loss.

A 68-year-old woman with end-stage renal disease secondary to unknown glomerulopathy received a kidney from a cadaveric donor, with graft function (serum creatinine level 81 μmol/L) immediately after transplantation. CMV status was donor-positive (D⁺)/recipient-positive (R⁺). The patient received basiliximab, tacrolimus, mycophenolate mofetil and methylprednisolone for induction, followed by maintenance immunosuppression with tacrolimus, mycophenolate mofetil,